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ABSTRACT

In recent work we presented the first results of global general relativistic

magnetohydrodynamic (GRMHD) simulations of tilted (or misaligned) accretion

disks around rotating black holes. The simulated tilted disks showed dramatic

differences from comparable untilted disks, such as asymmetrical accretion onto

the hole through opposing “plunging streams” and global precession of the disk

powered by a torque provided by the black hole. However, those simulations used

a traditional spherical-polar grid that was purposefully underresolved along the

pole, which prevented us from assessing the behavior of any jets that may have

been associated with the tilted disks. To address this shortcoming we have added

a block-structured “cubed-sphere” grid option to the Cosmos++ GRMHD code,

which will allow us to simultaneously resolve the disk and polar regions. Here

we present our implementation of this grid and the results of a small suite of

validation tests intended to demonstrate that the new grid performs as expected.

The most important test in this work is a comparison of identical tilted disks, one

evolved using our spherical-polar grid and the other with the cubed-sphere grid.

We also demonstrate an interesting dependence of the early-time evolution of our

1Astronomy Department, University of Texas, 1 University Station, C1400, Austin, TX 78712



– 2 –

disks on their orientation with respect to the grid alignment. This dependence

arises from the differing treatment of current sheets within the disks, especially

whether they are aligned with symmetry planes of the grid or not.

Subject headings: accretion, accretion disks — black hole physics — methods:

numerical — MHD — relativity

1. Introduction

We have recently undertaken a series of numerical studies of titled accretion disks around

rapidly rotating black holes, first in the hydrodynamic (Fragile & Anninos 2005) and then

in the magnetohydrodynamic (MHD) (Fragile et al. 2007b) limits. All of these simulations

have been fully general relativistic, using the Kerr-Schild metric to represent the spacetime

of the black hole.

Tilted accretion disks are of particular interest because they are subject to differential

warping due to the Lense-Thirring precession of the rotating black hole. For very thin

disks, close to the black hole the competition between the differential twisting and “viscous”

damping causes the angular momenta of the disk and hole to align. Further out in the disk,

beyond some warp radius, the disk maintains its misaligned state.

For moderately thin to thick disks, such as the ones we simulated previously, the situa-

tion is more complex and interesting. The primary difference is that warping is transported

via bending waves rather than diffusively, as for thin disks. One consequence of this is that

the midplane of a thick disk does not tend to align with the symmetry plane of the black

hole at small radii, as in the thin disk case. In fact, the relative tilt between the black-hole

and disk angular momenta can increase at small radii. Having the tilted disk penetrate

very close to the black-hole has many interesting consequences. For instance, we found that

accretion onto the hole occurs predominantly through two opposing “plunging streams” that

start from high latitudes with respect to both the black-hole and disk midplanes (Fragile

et al. 2007a). There is also a strong epicyclic driving within the disk attributable to the

gravitomagnetic torque of the misaligned (tilted) black hole (Fragile & Blaes 2008). The

induced motion of the gas can be coherent over the scale of the entire disk. The gas also

experiences periodic (twice per orbit) compressions. The compressions occur as the gas or-

bits past the line-of-nodes between the black-hole symmetry plane and disk midplane. Near

the black hole these compressive motions can become supersonic and transform into a pair

of quasi-stationary shocks. The shocks act to enhance angular momentum transport and

dissipation near the hole, forcing some material to plunge toward the black hole from well
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outside the innermost stable circular orbit. Finally, because we are simulating disks with

finite radial extents and fast sound-crossing times, the torque of the black hole causes the

entire disk body to precess globally.

The main shortcoming of our work so far comes from limitations imposed on us by

our use of a spherical-polar grid. First, construction of a uniform spherical polar grid in

three-dimensions results in very small zones surrounding the two poles, where all of the lines

of longitude converge. These very small zones constrain the Courant-limited timestep to

be exceedingly small, such that the required CPU cycle count becomes prohibitively large.

To avoid this problem, researchers have either excised a small conical section around each

pole (e.g. De Villiers & Hawley 2003) or used a lower grid resolution near the poles (Fragile

et al. 2007b). Although these techniques are reasonable when one is primarily interested

in studying the equatorial region (where a disk may form), these are not satisfactory when

one is interested in what is happening in the polar regions (where jets may form). A second

problem with the spherical-polar grid is that the poles themselves actually represent coordi-

nate singularities, which present significant challenges for numerical advection and curvature

coupling schemes (e.g. solving Riemann curvature source terms).

For these reasons we have added the cubed-sphere grid (Sadourny 1972; Ronchi et al.

1996) as an option within our numerical code, Cosmos++. The advantage of this grid

construction is that its topological properties more closely resemble a Cartesian coordinate

system than a spherical-polar system. The cubed-sphere grid uses a more uniform zone

spacing than spherical polar, so the timestep can remain reasonably large even in high

resolution simulations. Also important, the grid does not contain any coordinate singularities

except at the origin, which is not a concern for our intended use since we truncate the grid

just inside the event horizon of the black hole. Ours is not the first application of the cubed-

sphere grid to problems in computational astrophysics; it has been used previously to study

accretion onto rotating stars with inclined magnetic fields (Koldoba et al. 2002; Romanova

et al. 2003) and a few problems in stellar evolution (Dearborn et al. 2005, 2006). However

this is the first application of this grid to the study of black-hole accretion disks and their

attendant jets.

The paper is organized as follows: §2 describes the cubed-sphere mesh in detail and

our particular implementation. In §3 we discuss results of basic gradient tests on the cubed-

sphere grid. In §4 we compare two sets of numerical simulations of black-hole accretion disks.

In the first set we compare simulations of disks accreting onto a Schwarzschild black hole.

We compare different grids, resolutions, and orientations of the disk with respect to the grid.

Because these simulations use a Schwarzschild black hole, the orientation should have no

physical meaning. However, we show that there are, nevertheless, considerable differences
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in their evolution at early times. We present the case that the differences have to do with

the differing treatments of the midplane current sheets in the disks, which forms from the

differential winding of our initial poloidal field loops. Finally we compare simulations of

tilted accretion disks around Kerr black holes. We use a tilt of β0 = 15◦ and a spin of

a/MBH = JBH/M2
BH = 0.5, in geometrized units where G = c = 1, and MBH and JBH are the

mass and angular momentum of the black hole, respectively. One of these simulations is run

on a spherical-polar mesh, the others on the cubed-sphere grid. We demonstrate that, for

the most part, the simulations agree very well.

2. The Cubed Sphere

The cubed-sphere grid gets its name from its construction – it is actually composed of six

“blocks” that are morphed into segments of a sphere. Each block is constructed of segments

of concentric radial shells. In the present work, these shells are spaced exponentially based

upon their distance from the hole, similar to a logarithmic radial coordinate. The other two

coordinates are constructed such that, on any given block, the grid lines trace out “great

circles” on each radial shell segment. It is as if there are two longitude coordinates, φ1 and

φ2, on each block. The range of φ1 and φ2 on each block is π/2 so that the full 4π steradian

is covered by the six blocks.

The difficulty with the cubed-sphere grid is that the “great circles” cannot be made

continuous across all six blocks, and hence the block-structured nature of the mesh. Stated

differently, the coordinates φ1 and φ2 cannot maintain a consistent orientation across all

blocks. At each block boundary, the coordinate system has a discontinuous jump. Fortu-

nately this can be handled with the proper application of boundary conditions and commu-

nication between blocks, as we shall describe.

Another problem with the cubed-sphere grid is that the φ1 and φ2 coordinates are not

orthogonal. There are techniques available to try to improve the orthogonality of the cubed-

sphere grid at the cost of reducing its uniformity. However, such techniques have been shown

not to perform significantly better than the standard cubed-sphere grid implemented here

(Putman & Lin 2007). Furthermore, such techniques are not necessary in our Cosmos++

code, which is designed with tremendous mesh flexibility to handle a variety of grids including

fully unstructured and non-orthogonal ones.
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2.1. Implementation within Cosmos++

When working with more traditional spherical-polar meshes, the Cosmos++ code ac-

tually evolves the MHD equations in a generalized coordinate system {x0, x1, x2, x3}, with

the curvature implemented through metric terms. This is done even for the Newtonian for-

mulation. The corresponding physical coordinates in general relativity are the Kerr-Schild

polar coordinates {t, r, θ, φ}. For the cubed-sphere, instead, we construct the grid in physical

space using the Kerr-Schild Cartesian coordinate system {t, x, y, z}. The two Kerr-Schild

coordinate systems are related through the following transformations:

x = r sin θ cos φ − a sin θ sin φ ,

y = r sin θ sin φ + a sin θ cos φ ,

z = r cos θ , (1)

or

r2 =
(x2 + y2 + z2 − a2) +

√

(x2 + y2 + z2 − a2)2 + 4a2z2

2
,

sin θ =

(

x2 + y2

r2 + a2

)1/2

,

cos θ =
z

r
,

sin φ =
ry − ax

√

(r2 + a2)(x2 + y2)
,

cos φ =
rx + ay

√

(r2 + a2)(x2 + y2)
. (2)

Ultimately the Cosmos++ code just needs to know the coordinate locations of all the

zone vertices. From those it is able to fully reconstruct all of the necessary zone properties

such as volumes and face areas. We find it easiest for the cubed-sphere grid to start from the

cubed-sphere coordinates {r, φ1, φ2} of each vertex, then use the transformations given in

Appendix A to convert to the Kerr-Schild polar coordinates {r, θ, φ}, and finally use equation

(1) to obtain the correct Kerr-Schild Cartesian coordinates {x, y, z} from the polar ones. For

convenience we label the six blocks 0-5, with their orientations described in Appendix A.

Samples of blocks 0, 1, and 2 are illustrated in Figure 1.

One consequence of using Kerr-Schild Cartesian coordinates is that, whereas in the

spherical-polar case we were able to tilt the black hole with respect to the grid (Fragile &

Anninos 2005; Fragile et al. 2007a,b), in the cubed-sphere case the black hole must remain

aligned with the grid for a rotating black hole (a 6= 0). This is because in Kerr-Schild
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Cartesian coordinates, the z-axis is chosen to be the spin axis of the black hole and the event

horizon is only symmetric about this axis. Thus, in order to get the inner boundary of the

cubed-sphere grid to align with the black-hole event horizon, the black-hole spin axis must

align with the grid z-axis.

2.2. Boundary Conditions

As we said, one of the difficulties with the cubed sphere is that the coordinates are not

continuous across block boundaries. This requires some care when setting up communications

between blocks. Even once the communication pattern between blocks is established, there

are certain subtleties about the grid that must be dealt with. For instance, as we show

in §3, the gradient operator can only be made to converge properly (second order) if a

set of ghost zones are constructed that are an extension of the coordinates on the current

block. However, such ghost zones then do not correspond directly to any of the zones on the

neighboring block; instead they tend to straddle more than one zone, and a simple domain

exchange is not exactly valid. Fortunately, at any inter-block boundary it is only one of the

φ coordinates that is discontinuous; the radial coordinate and the other φ coordinate are

consistent across any given inter-block boundary (Ronchi et al. 1996). Therefore, for a single

layer grid with uniform zone spacing, the ghost zones of one block will never overlap more

than two zones on the neighboring block. In such a case, we can get away with applying

a boundary condition that simply fills the ghost zone with a field FW that is a weighted

average of the fields in the two real zones it overlaps, F0 and F1. The weighted average we

use is

FW =
F0(L − |x0 − x|) + F1(L − |x1 − x|)

L
, (3)

where

L = |x1 − x| + |x0 − x| , (4)

and x, x0, and x1 are the coordinate centers of the ghost zone and the two real zones it

overlaps on the neighboring block, respectively. This weighting scheme is applied any time

a normal domain exchange would be needed between neighboring processors, such as after

fields are updated, but before any gradients are taken. Something slightly different must be

done for advection as explained in the next section.
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2.3. Advection

Because Cosmos++ was written using finite volume methods, and designed for arbitrary

mesh topologies, few changes were needed to apply the code to the cubed-sphere mesh. The

one thing (in addition to the ghost zone construction) that was modified, if only slightly,

was the algorithm for advection. A number of different options for advection are available

in Cosmos++ including upwind subzonal polyhedral reconstruction and global monotonic

flux limiter methods, described in Anninos et al. (2005). These methods are designed to

operate on multi-dimensional vector quantities (e.g., gradients) constructed from the convex

attributes of arbitrary covariant cell geometries and connectivities. However, for the cubed-

sphere mesh we found that flux estimates performed with local one-dimensional limited

projections (or differences) across individual cell faces are generally more robust than com-

puting vector fluxes across the entire cell structure, even with appropriate multi-dimensional

flux limiters.

The method is only slightly modified from that presented in Anninos et al. (2005),

so we present only an abbreviated discussion. The advection terms are solved for each

evolved field quantity using an upwind time-explicit, first order forward Euler scheme with

appropriately time-centered fluxes. Letting F represent any of the evolved fields (or their

consistent transport counterparts with F → F/D, where D is the mass density), the discrete

finite-volume representation of the advection source term can be written

∂i(FV i) = − 1

Vz

faces
∑

f

(F∗ V i Ai)f , (5)

where Vz is the local donor cell volume of zone z, (Ai)f is the inward pointing area normal

vector associated with face f of the donor cell, and (V i)f is the face-centered velocity defined

as a weighted average across neighboring cells. In Anninos et al. (2005), the quantity (F∗)f

represents piecewise linearly reconstructed zone-centered fields extrapolated to each cell face

by a monotonic Taylor’s series expansion, F∗ = Fz + (∂iF)L
z (ri − ri

z), projected from the

donor cell center ri
z to either the face center ri = ri

f or the advection control volume center

ri = ri
f − (∆t/2)(V i)f , over a time-step interval ∆t. The zone-centered limited gradient

(∂iF)L
z forces monotonicity in the extrapolated fields using polyhedral subzonal interpolations

and control volume integrals to construct upwind, downwind and centered variations. The

difference here, for the cubed-sphere, is that the monotonic multi-dimensional gradient is

replaced by a local one-dimensional calculation separately across each donor cell face, and

along the direction of the cell face normal (perpendicular to the cell face) using the generalized

minmod limiter in the form

∇F⊥ =

[

1

2

(

a

|a| +
b

|b|

)

× 1

2

(

a

|a| +
c

|c|

)

× 1

2

(

b

|b| +
c

|c|

)]

min (|a|, |b|, |c|) , (6)
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where a = (1 + λ)∇FD, b = ∇FC , c = (1 + λ)∇FU , λ is an order parameter between

zero and unity specifying the steepness of the applied limiter, and ∇FU , ∇FD, and ∇FC

are the upwind, downwind, and center-difference gradients, respectively. The upwind and

downwind gradients are defined as ∇FU(D) = k δF/δs, where k = ±1 depending on the

upwind direction with respect to the coordinate orientation, δF = Fz −Fopp is the difference

between donor and opposite cell field values, and δs is the magnitude of the distance between

donor and neighbor cell centers. The center-difference representation of the gradient is

approximated as ∇FC =
∑

faces(k/2)(δF/δs), where the sum is over opposite cell face pairs.

A projected estimate for the advected fields contributing to the flux in equation (5) at

each cell face is provided by the donor cell as F∗ = Fz + δF = Fz − k ∇F⊥ × δr, where

δr = |~xf −~xz −0.5∆t(V iAi) ~A/(AjAj)| is the distance to the advection control volume center

along the direction aligned parallel to the cell face normal vector ~A (between neighbor zone

centers).

For advection from one block to another, in order to conserve mass, energy, and mo-

mentum to round-off instead of truncation, it is important not to interpolate values between

ghost zones as was done for the extrapolated field gradients in the previous section. Instead,

for advection we use the ghost zones as “buckets” to capture material advecting off of the

host block. The mass, energy, and momentum collected in this bucket is then deposited into

the corresponding real zone on the neighboring block that shares a face with the originating

real zone as part of a final loop in the advection routine. This is appropriate since zones

along inter-block boundaries share faces with only a single neighbor.

3. Gradient Test

Because the cubed-sphere grid uses the same basic gradient operators that were already

tested in Cosmos++ (Anninos et al. 2005), we fully expect the same second order convergence

for smooth fields, at least in the interior zones. Nevertheless, it is worthwhile to conduct a

simple gradient test for a variety of fields to verify second order convergence over the entire

domain, including at the inter-block boundaries where we have introduced a new procedure

for interpolation of fields beyond local grid domains.

In our first attempt at implementing the cubed-sphere grid, we actually did not achieve

uniform second order convergence. In that attempt, instead of constructing the ghost zones as

extensions of each block as described in §2, we constructed the ghost zones to be exact replicas

of the nearest zone on the neighboring block and to mimic the behavior of periodic boundaries

on spherical-polar grids. However, this introduces a discontinuity into the gradient operator

and actually prevents the convergence of gradients at the inter-block boundaries. For interior
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zones not touching an inter-block boundary, we found the L1-normalized error for the gradient

of a simple scalar field to converge at second order as expected (the L1-normalized error is

defined as E1 =
∑

i,j,k |ai,j,k − Ai,j,k|/(ninjnk), where ai,j,k and Ai,j,k are the numerical and

exact solutions, respectively, in each zone and ni, nj , and nk are the number of zones in each

of the three directions). However, for the interior zones touching the inter-block boundaries

(not the ghost zones themselves, but the zones that touch them), the L1-normalized error

did not converge. To explain where this failure arises we first note that the gradient of a

generic field F in Cosmos++ is calculated as (akin to equation 5)

Gi = ∂iF = − 1

Vz

faces
∑

f

(F ∗Ai)f , (7)

where the summation is performed over all cell faces. The problem arises in calculating F ∗,

the face-centered value of the field; Cosmos++ uses a simple average of the zone-centered

values Fz in the two zones adjoining at face f . However, when the line connecting the two

zone centers does not pass through the center of the zone face, as is the case for nearest

neighbor cells across an inter-block boundary, this simple averaging does not give the correct

face-centered value F ∗. In fact, it is relatively easy to show in this case that the absolute error

(|ai,j,k − Ai,j,k|) in each zone along the inter-block boundary remains essentially constant,

regardless of the resolution (it only depends weakly on the location of the zone along the

boundary), thus explaining the non-convergence in these zones.

The ghost-zone construction described in §2, on the other hand, which is the only one

used for the remainder of this work, restores 2nd order convergence in all interior zones by

giving a properly extrapolated value for F ∗. Here F ∗ = 0.5(Fz + FW ) is a simple average

of the zone-centered value Fz in the interior zone and the ghost-zone weighted average FW

from equation (3). We have confirmed that all interior zones (including those touching the

inter-block boundaries) give errors at the level of round-off for flat fields and second-order

convergence for all linear and higher-order fields.

4. Tilted Accretion Disks

Having demonstrated that our implementation of the cubed-sphere grid preserves the

correct convergence order for our code, we can confidently move on to testing our primary

application of interest: black-hole accretion disks. We begin with a review of how the

simulations are initialized and then consider two sets of test cases: In §4.1 we study disks

of differing alignments relative to a Schwarzschild black hole; in §4.2 we compare tilted disk

simulations around a Kerr black hole, one carried out on a spherical-polar mesh and the

others on the cubed-sphere.



– 10 –

Most of the accretion disk simulations presented in this work using the cubed-sphere

grid are carried out at a resolution of 128 × 64 × 64 × 6, where there are 128 radial shells

and each of the blocks are resolved with 64 × 64 angular zones. Along its symmetry planes,

such a grid looks like a spherical polar grid of resolution 128×128×256. However, the more

uniform distribution of zones in the cubed-sphere grid means we are able to achieve such

resolution with a smaller number of zones overall (by a factor of 3/4). Also, because of the

more uniform zone sizing, we are able to run with a Courant time step that is almost 30

times larger than could be used with a spherical-polar grid of that resolution, which means

the required CPU cycle-count is smaller by the same factor. An image of the actual grid

used in these simulations is shown in the left panel of Figure 2. This can be compared to the

spherical-polar grid used in Fragile et al. (2007b), including the underresolved polar regions,

which is shown in the right panel of Figure 2. The timestep for the cubed-sphere grid is even

25% larger than for that special grid, where the pole was underresolved precisely to keep the

timestep reasonable.

The inner and outer radial boundaries are set at 0.98rBH and 120rG, respectively, where

rBH is the radius of the black-hole horizon and rG = GMBH/c2 is the gravitational radius.

Note that, because we use the Kerr-Schild form of the Kerr metric, we are able to place the

inner radial boundary inside the black-hole horizon. In principle, this should keep the inner

boundary causally disconnected from the flow, although numerically there is still some com-

munication. At both the inner and outer radial boundaries we apply “outflow” conditions:

Fluid variables are set the same in the external boundary zone as in the neighboring internal

zone, except for velocity, which is chosen to satisfy

V r
ext =

{

V r
int V r points off the grid ,

−V r
int V r points onto the grid .

(8)

For the initial conditions of the simulations we start from the commonly used analytic

solution for a hydrostatic fluid torus orbiting the black hole. In this case, we choose the torus

parameters to be the black-hole spin (a/MBH), the inner radius of the torus (rin = 15rG), the

radius of the pressure maximum of the torus (rcenter = 25rG), and the power-law exponent

(q = 1.68) used in defining the specific angular momentum distribution,

ℓ = −uφ/ut = kΛ2−q , (9)

where uµ = gµνu
ν , gµν is the 4-metric, and uµ is the fluid 4-velocity. We then follow the

procedure in Chakrabarti (1985) to solve for the initial state of the torus. Knowledge of rcenter

leads directly to a determination of ℓcenter by setting it equal to the geodesic value at that

radius. The numerical value of k comes directly from the choice of q and the determination
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x
y

z

Fig. 1.— Examples of blocks 0 (right), 1 (center), and 2 (left) that might make up a cubed-

sphere grid. Note that in this illustration we use a very low resolution for clarity.

Fig. 2.— (left) Plot of the cubed-sphere grid geometry used for the disk simulations presented

in this work. (right) Plot of the spherical-polar grid used in Fragile et al. (2007b), including

an underresolved polar region.
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of Λcenter, where
1

Λ2
= − gtφ + ℓgtt

ℓgφφ + ℓ2gtφ

. (10)

Finally, having chosen rin we can obtain uin = ut(rin), the surface binding energy of the

torus, from u−2
t = gtt − 2ℓgtφ + ℓ2gφφ.

The solution of the torus variables can now be specified. The internal energy of the

torus is (De Villiers et al. 2003)

ǫ(r, θ) =
1

Γ

[

uinf(ℓin)

ut(r, θ)f(ℓ(r, θ))

]

, (11)

where ℓin = ℓ(rin) is the specific angular momentum of the fluid at the surface and

f(ℓ) =
∣

∣1 − k2/nℓα
∣

∣

1/α
, (12)

where n = 2 − q and α = (2n − 2)/n. Assuming an isentropic equation of state for the

initialization only, the gas pressure and density must be related by the expression P =

ρǫ(Γ − 1) = κρΓ, and so the density is given by ρ = [ǫ(Γ − 1)/κ]1/(Γ−1). We take Γ = 5/3

and κ = 0.01 (arbitrary units). Finally, the angular velocity of the fluid is specified by

Ω = V φ = − gtφ + ℓgtt

gφφ + ℓgtφ
. (13)

The torus is then seeded with weak poloidal magnetic field loops with non-zero spatial

components Br = −∂ϑAϕ and Bϑ = ∂rAϕ, where

Aϕ =

{

b(ρ − ρcut) for ρ ≥ ρcut ,

0 for ρ < ρcut .
(14)

The parameter ρcut = 0.5∗ρmax,0 is used to keep the field a suitable distance inside the surface

of the torus initially, where ρmax,0 is the initial density maximum within the torus. Using

the constant b in equation (14), the field is normalized such that initially βmag = P/PB ≥
βmag,0 = 10 throughout the torus, where PB is the magnetic pressure. The magnetic field is

added in order to seed the magneto-rotational instability (MRI; Balbus & Hawley 1991),

which is now commonly believed to be the source of angular momentum transport within

black-hole accretion disks (Balbus & Hawley 1998).

As mentioned in §2, our implementation of the cubed-sphere requires that the black-hole

be aligned with the grid. Therefore, unlike our previous work where we tilted the black hole,

if we want a tilted configuration now we must tilt the disk. By itself, tilting the disk is a
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rather trivial operation, simply requiring the following coordinate transformation be applied

prior to constructing the torus:

x′ = x cos β0 − z sin β0

y′ = y

z′ = x sin β0 + z cos β0 , (15)

where β0 is the initial tilt of the disk. However, as we describe in the next section, we were

surprised to discover that our tilted disks evolved differently than our untilted disk, at least

at early times, even for non-rotating, Schwarzschild black holes, for which a tilt should have

no physical meaning or significance.

4.1. Schwarzschild Black Hole

Here we compare simulations of black-hole accretion disks carried out for a Schwarzschild

black hole (a/MBH = 0). Table 1 summarizes the parameters for these runs. In our naming

convention, the first number indicates the dimensionless spin of the black hole (a/M) without

the decimal; the second number, if present, gives the tilt angle of the disk in degrees; the

final letter is used to distinguish what resolution the simulation is carried out at, “H” being

our high resolution (128× 64× 64× 6) and “L” being low (64× 32× 32× 6). The two main

simulations, 0H and 015H, begin from identical initial conditions except for the tilt of the

disk with respect to the grid, which are 0 and 15◦ respectively. We also include results of

a simulation that uses the spherical-polar grid from Fragile et al. (2007b); this simulation

is denoted by the suffix “SP” and has an equivalent peak resolution of 1283. We showed in

Fragile et al. (2007b) that this was roughly the minimum resolution needed to get a relatively

well converged result for this type of problem. Therefore, in the current work, we do not

expect our low-resolution simulation (0L) to be converged; they are instead included for the

purpose of estimating the rate of convergence when using the cubed-sphere grid.

Our first concern with the cubed-sphere grid is that the angular-momentum conservation

may not be sufficient for the purpose of following the long-term evolution of an accretion

disk, particularly as the flow crosses the coordinate discontinuities at block boundaries. At

a minimum we want to quantify our angular-momentum-conservation error, which we do

graphically in Figure 3, where we plot the total angular momentum in each simulation as a

function of time for runs 0L, 0H, 015H, and 0SP. The total angular momentum is defined as

∫

V

T 0
φ

√
−gdV , (16)
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where T 0
φ = (ρh + 2PB)u0uφ − (B0Bφ)/(4π), g is the determinant of the 4-metric, Bµ is the

magnetic field 4-vector, and

h = 1 + ǫ +
P

ρ
(17)

is the relativistic enthalpy. We only plot part of the first orbital period (t ≤ 0.8torb) of data

because after this time significant amounts of angular momentum begin to advect into the

black hole and leave the outer boundary of the grid in jets and winds, so that it is much more

difficult to track the global conservation. Ideally all the lines in Figure 3 would be perfectly

horizontal, indicating exact angular momentum conservation, but we do not really expect

this (slight imbalances in the momentum “source” terms and imperfect boundary conditions,

for instance, can prevent exact conservation). The angular momentum conservation in our

“low” resolution simulation 0L is 0.18% (extrapolated to a full orbital period); this drops

down to 0.048% per orbital period at our normal resolution, about the level of convergence

(second order) we expect. Furthermore, it appears that this error is not strongly dependent

on the orientation of the disk with respect to the grid, based on a comparison of simulations

0H and 015H. Simulation 0SP is included to give some indication of our typical angular

momentum conservation error on the multi-resolution-layer spherical-polar grid used in our

previous work. The error in this case is 0.019% per orbital period, somewhat better but

still comparable to simulation 0H, suggesting we suffer only a small degradation in angular

momentum conservation in going from our spherical-polar grid to the cubed-sphere grid.

Because we are simulating a non-rotating black hole in this section, any tilt we assign the

disk has no physical meaning; it can only be defined relative to the grid. We would expect,

therefore, that this tilt would not have any physical effect on the evolution. Interestingly,

that is not what we find at early times. The difference is perhaps shown most graphically

in Figure 4, which shows the gas density of the disk for simulations 0H and 015H along

one azimuthal slice after one orbital period (torb) at the initial pressure maximum (rcenter).

In simulation 0H (left panel of Fig. 4), the disk has spread radially to such an extent

that it reaches all the way to the event horizon of the black hole (inner boundary of the

computational grid). In simulation 015H, on the other hand (right panel), the disk has

hardly spread radially at all, having started at rin = 15rG and only penetrated to 12rG.
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Fig. 3.— Plot of the total angular momentum as a function of time for simulations 0H

(solid), 015H (dashed), 0L (dot-dashed), and 0SP (dotted). All plots have been normalized

to their initial angular momenta. Simulation 0SP uses the spherical-polar grid described in

Fragile et al. (2007b).
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Table 1. Schwarzschild Simulation Parameters

Simulation a/M Tilt Resolutiona Startb Endb Ṁc

Angle Time Time

0Ld 0 0 64 × 32 × 32 × 6 0 4 -0.0129

0Hd 0 0 128 × 64 × 64 × 6 0 4 -0.0090

015Hd 0 15◦ 128 × 64 × 64 × 6 0 4 -0.0085

0SPe 0 0 1283 0 4 -0.0141

aIn the case of the spherical-polar grid this represents the equivalent peak reso-

lution of an unrefined grid.

bIn units of torb = 785GM/c3, the geodesic orbital period at the initial pressure

maximum rcenter.

cCalculated from the slopes of M vs. t over the interval 3 ≤ t/torb ≤ 4.

dCubed-sphere grid.

eMulti-resolution-layer spherical-polar grid.
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Fig. 4.— Plot of logarithm of density (normalized to ρ0,max) along an azimuthal slice at

φ = 0 at t = 1torb for simulations 0H (left panel) and 015H (right panel). Because the black

hole is not rotating in this simulation, the tilt should have no physical effect and we would

expect the two simulations to evolve nearly identically. The observed differences are due

to the numerical treatment of the current sheet that forms in the midplane of the disk, as

described in the text.
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The primary mechanism responsible for the radial spreading of the disk over the first

orbital period is not solely the MRI, but also the differential winding of the initial radial

component of the poloidal field loops, the so-called Ω-dynamo. The amplified toroidal and

radial field components allow for efficient angular momentum transport essentially from the

beginning of the simulation. This is, of course, peculiar to an initial field configuration such

as ours which includes a radial field component. If, instead, we started from a purely toroidal

field, differential winding would not play a role initially and angular momentum transport

would have to await a more complete development of the MRI, which occurs on roughly an

orbital timescale.

Something in simulation 015H appears to be shorting out the shear amplification of

the field as compared to simulation 0H. Growth of the MRI also appears to be delayed, as

evidenced by the less turbulent appearance of simulation 015H in Figure 4. This may be

related to the lack of an Ω-dynamo since the MRI has less field to grow on whenever this

is inactive (Hawley & Krolik 2002). Furthermore, we can see for certain in Figure 5 that

the total magnetic energy is growing more slowly in simulation 015H than in 0H (and 0SP).

Here we define the magnetic and kinetic energies as

√−g

[

(

g00 + 2u0u0
)

PB − B0B0

4π

]

(18)

and Dh(u0 − 1), respectively, where D = Wρ is the generalized fluid density with boost

W =
√−gu0. Both energies are summed over the entire simulation domain. All three

simulations show a very rapid initial growth of the magnetic energy due to the combination

of shear amplification and the MRI. They also show a gradual increase in kinetic energy over

the first orbit as gravitational potential energy is converted into kinetic. After approximately

1torb the growth of the magnetic fields saturates. At about the same time in simulations

0H and 0SP, kinetic energy begins accreting into the black hole in significant amounts,

accounting for the sudden change in slope. This happens about an orbit and a half later in

simulation 015H.

The culprit for the retarded field growth in simulation 015H appears to be the numerical

treatment of the current sheet that forms in the midplane of the disk as a result of the

differential winding. For an untilted simulation, such as 0H, this current sheet resides almost

exactly along an interfacial boundary, right along one of the symmetry planes of the grid

(see left panel of Figure 6). Furthermore, because this is a nearly perfect symmetry plane

for the flow, there is very little advection of fluid across this boundary, and so the current

sheet remains relatively stationary. In effect, the current sheet remains unresolved, because

it spans less than a full zone’s width in the vertical direction. Notice how narrow the current

sheet is in the left panel of Figure 6. This is not the case for a tilted-disk simulation. By
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Fig. 5.— Plot of the total magnetic (top) and kinetic (bottom) energies as functions of time

for simulations 0H (solid), 015H (dashed), and 0SP (dotted). All plots have been normalized

by the initial kinetic energy of simulation 0H.
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necessity, the disk midplane in a tilted disk is no longer aligned with any symmetry plane of

the grid (right panel of Figure 6). This means that the disk midplane, and more importantly

the midplane current sheet, passes through the interiors of some zones rather than always

along their boundary. Numerically this is a critical distinction. For a zone-centered code

such as Cosmos++ whenever a current sheet is aligned along an interfacial boundary that

experiences no advection, as is approximately the case in our untilted simulations (0H and

0SP), there can be no numerical reconnection and magnetic fields are preserved. If, on the

other hand, the current sheet passes through a zone center, as it does in our tilted simulation

(015H), numerical reconnection is greatly enhanced. The effect is to drain energy from the

magnetic field. In the present work, which uses the internal energy conserving form of

Cosmos++ this energy is simply lost from the simulations (see Fragile & Meier (2008) for

a discussion of the implications of the different forms of energy conservation in numerical

simulations of black-hole accretion disks).

This is a somewhat worrisome discovery; however, we emphasize that it is restricted to

the particular field geometry we start with, as no strong midplane current sheet forms if one

starts from a purely toroidal field. Furthermore, as the disk becomes more turbulent with the

action of the MRI, we find that the discrepancies between the tilted and untilted simulations

are dramatically reduced to the point that, at late times, they are nearly indistinguishable.

For instance, in Figure 7, we show plots equivalent to Figure 4, except at t = 4torb as opposed

to 1torb, which show the two disks to be nearly identical. The late-time mass accretion rates

are also quite similar (see Table 1).

For a more rigorous comparison, in Figure 8, we present time- and shell-averaged values

of density (ρ), gas pressure (P ), dimensionless stress (α), plasma magnetization parameter

(βmag), specific angular momentum (ℓ), and radial inflow velocity (V
r
) as functions of radius

for simulations 0H, 015H, and 0SP at late time, where

α =

〈 |uruϕ||B||2 − BrBϕ|
4πP

〉

(19)

and V
r

= 〈ρV r〉/〈ρ〉. Angle brackets indicate that a radial shell-average has been taken,

where

〈Q〉(r, t) =
1

A

∫ 2π

0

∫ π

0

Q
√
−g dθ dφ , (20)

and A =
∫ 2π

0

∫ π

0

√−g dθ dφ is the surface area of a given radial shell. The time-averaging

is done over the interval 3 ≤ t/torb ≤ 4. The shell-averages for P , α, βmag, ℓ, and V
r

are

mass-weighted. Measurements of ρ, P , and ℓ show very good agreement between all three

simulations, with errors everywhere . 20% and generally much less. The discrepancies in

α, βmag, and V
r

are similarly small for simulations 0H and 0SP, but considerably larger
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Fig. 6.— Pseudocolor plot representing the value of By (in code units) along an azimuthal

slice at φ = 0 at t = 1torb for simulations 0H (left panel) and 015H (right panel). The

midplane current sheet (represented by the line where the color changes from red to blue)

remains essentially sub-zonal in simulation 0H, whereas it is spread across approximately 3

zones in simulation 015H (greenish-yellow zones between red and blue).

Fig. 7.— Same as Fig. 4, except at time t = 4torb instead of 1torb. Here the discrepancies

between the untilted (left panel) and tilted (right panel) simulations are greatly diminished.
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for simulation 015H. This is not unexpected as these quantities depend sensitively on the

distribution of magnetic field, meaning they are more affected by the delayed growth of the

MRI.

4.2. Kerr Black Hole

Having shown that the late-time evolution of simulated black-hole accretion disks on

our cubed-sphere grid is relatively independent of the orientation of the disk with respect

to the grid by analyzing a few Schwarzschild test cases, we can now evaluate the treatment

of tilted accretion disks around modestly rotating (a/MBH = 0.5) Kerr black holes. Here

our test simulations (515L and 515H), which use the new cubed-sphere grid, are compared

to a reference simulation (515SP), which uses the multi-resolution-layer spherical-polar grid

from Fragile et al. (2007b) (shown in Figure 2 right panel). All simulations have an initial

tilt angle β0 = 15◦. Again we do not expect the low-resolution simulation (515L) to be

converged; instead it is included to provide some indication of the rate of convergence. The

parameters for each run are described in Table 2.

First we show in Figure 9 that the general disk properties of simulations 515H and 515SP

are quite similar. Again, the largest discrepancies are in the dimensionless stress α and the

plasma magnetization parameter βmag = P/PB. This is not surprising since both of these

properties have been shown in previous studies to be quite sensitive to resolution (Hawley

et al. 1996; Fromang & Papaloizou 2007), and although the total number of zones in these

two simulations is comparable, the distribution of those zones is considerably different. The

level of agreement in the other parameters is really quite remarkable given the very different

structures of the grids. Of course, this was exactly what we were hoping to see.

Now, because the black-hole is rotating, the tilt of the disk has some physical meaning

and consequently causes changes in its evolution relative to an untilted disk, as described

in Fragile et al. (2007b) and Fragile & Blaes (2008). For instance, although the disk begins

with a uniform tilt of β0 = 15◦, we expect a warp caused by the gravitomagnetic torque of

the black hole to propagate through the disk as a bending wave. This will cause the tilt β

to become an oscillating function of radius (Ivanov & Illarionov 1997; Lubow et al. 2002).

In Figure 10, we plot β(r), time averaged over the interval 8torb ≤ t ≤ 10torb, for simulations

515L, 515H, and 515SP. As in previous work (Fragile & Anninos 2005; Fragile et al. 2007b),

we recover the tilt using the definition

β(r) = arccos

[

JBH · JDisk(r)

|JBH||JDisk(r)|

]

, (21)

where JBH is the angular momentum vector of the black hole and JDisk(r) is the angular
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Fig. 8.— Main disk properties plotted as a function of radius for simulations 0H, 015H,

and 0SP. The data have been time-averaged over the final orbital period of each simulation

(3 ≤ t/torb ≤ 4). P , α, β, ℓ, and V r are mass-weighted averages of the pressure, dimension-

less stress, plasma equipartition parameter, specific angular momentum, and radial inflow

velocity, respectively.
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Fig. 9.— Main disk properties plotted as a function of radius for simulations 515H and

515SP. The data have been time-averaged over the final two orbital periods of each simu-

lation (8 ≤ t/torb ≤ 10). P , α, β, ℓ, and V r are mass-weighted averages of the pressure,

dimensionless stress, plasma equipartition parameter, specific angular momentum, and radial

inflow velocity, respectively.
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momentum vector of each radial shell of the simulation domain (dominated by the disk).

Again simulations 515H and 515SP produce remarkably similar results, with discrepancies

no larger than ∼ 10% and generally much smaller. The discrepancies likely have their root

in the small differences in conditions at the inner edge of the disk (see Figure 9) where the

bending waves are launched. The 515L simulation exhibits considerably larger discrepancies

over most of the disk as expected.

Along with warping the disk, the gravitomagnetic torque of the black hole also causes

it to precess, particularly in disks such as the ones in our simulations where the fast sound-

crossing time causes the disk material to be tightly coupled and respond globally to the

torque of the black hole. Global precession of this nature has been noted before in low Mach

number hydrodynamic (Fragile & Anninos 2005) and MHD (Fragile et al. 2007b) disks. We

track the overall precession (twist), defined as

γ = arccos

[

JBH × JDisk

|JBH × JDisk|
· ŷ

]

, (22)

where JDisk is the total angular momentum vector of the disk and ŷ is the unit vector

that points along the initial line-of-nodes between the black-hole symmetry plane and disk

midplane. In order to capture twists larger than 180◦, we also track the projection of

JBH×JDisk onto x̂, allowing us to break the degeneracy in arccos. By plotting the cumulative

precession as a function of time as we have done in Figure 11, we make it easy to calculate

the precession period of the disk – in this case 0.7(M/M⊙) s, which agrees nicely with our

predictions for a black-hole of this spin (Fragile et al. 2007b).

5. Conclusion

In this paper we have presented our implementation of the cubed-sphere grid within

Cosmos++. The cubed-sphere grid has at least three significant advantages over more-

traditional grid options: 1) it has topological properties similar to a Cartesian grid, but

generally conserves angular momentum much better (and nearly as well as a spherical-polar

mesh); 2) it can run at a larger Courant-limited timestep than a spherical-polar mesh at

comparable resolution (almost a factor of 30 at the resolution used in this work); and 3) it

distributes zones more evenly than a spherical-polar mesh, which is desirable for problems

where the symmetry is imperfect, such as in tilted accretion disks around rotating black

holes, a problem of particular interest to us.

In Section 2 and Appendix A we gave detailed prescriptions for the construction of

the cubed-sphere grid and shared a few “lessons learned” in regards to extrapolating fields
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Fig. 10.— Plot of the tilt β as a function of radius through the disk for simulations 515L,

515H, and 515SP. The data for this plot has been time averaged over the final two orbital

periods of each simulation (8 ≤ t/torb ≤ 10). The initial tilt was β0 = 15◦.
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Fig. 11.— Plot of the precession (twist) γ as a function of time for simulations 515L, 515H,

and 515SP. The slope of this plot can be used to estimate the precession period of the disk

as a whole, which is 0.7(M/M⊙) s.
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at inter-block boundaries and applying limiters to the field gradients in advection. After

implementing these lessons ourselves, we found we could recover second order convergence

over the entire grid, including along the inter-block boundaries.

To specifically demonstrate that the cubed-sphere grid is a viable option for the black-

hole accretion disk work we have in mind, we have carried out a series of such simulations

on our new cubed-sphere grid, using results from our spherical-polar grid as a reference

standard. From these tests we conclude that:

• The cubed-sphere grid conserves angular momentum nearly as well a spherical-polar

grid at comparable resolution.

• The angular momentum conservation error on the cubed-sphere grid is only weakly

dependent on the tilt of the disk.

• Results on the cubed-sphere grid converge to the same solutions obtained on a spherical-

polar grid when the two grids approach comparable resolutions. This is true for both

untilted and tilted disks.

• Important disk properties such as density, pressure, specific angular momentum, inflow

velocity, tilt and twist agree to better than 10-20% for simulations carried out on cubed-

sphere and spherical-polar grids with roughly (2-3)×106 zones.

During our testing, we made one surprise discovery – that the early-time evolution was

considerably different between our untilted and tilted simulations on the cubed-sphere grid.

We found this to be true even for non-rotating Schwarzschild black holes, for which a tilt

should have no physical meaning or significance. This is something we had not seen on

the spherical-polar grid, but there we had tilted the black-hole, not the disk as we do now.

We did not anticipate how important this difference would be for the initial growth and

development of the Ω-dynamo and MRI.

We attribute the disparate early-time behavior to the differing ways in which the strong

initial current sheet in our disk is handled numerically when it is tilted with respect to the

grid. This is another reminder of the important role that numerical reconnection plays in

the evolution of numerically simulated magnetized flows even though this topic is perhaps

not given enough emphasis in the literature. The appearance of current sheets is virtually

unavoidable in strongly sheared MHD flows such as accretion disks. One possible technique

for treating the current sheets more consistently throughout the simulation may be to use an

artificial resistivity. This would ensure that the current sheets are always resolved in a similar

fashion regardless of their orientation with respect to the grid. However, this technique has
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only been implemented very recently in relativistic MHD (Komissarov 2007). An alternative,

although only partial, solution might be to use a total-energy conserving scheme instead of

the internal-energy conserving one used here. This, at least, guarantees that the energetics

of the flow remain consistent by recapturing in the form of thermal energy any energy lost

through magnetic reconnection. When coupled with a radiative cooling package, this can

give a much more physical description of the evolution of the flow (Fragile & Meier 2008).

Although the numerical treatments of current sheets and reconnection are important

to understand and appreciate, it is equally important in the context of this paper to point

out that we demonstrated by numerical example that the long-term evolution of our disks is

relatively unaffected by whether or not they are tilted with respect to the grid. As expected,

only when the tilt is relative to a rotating black hole are there long-term implications within

the disk.

We are not surprised to find significant discrepancies between our “low” and “high”

resolution simulations, as previous experience had shown us that 1283 was roughly the min-

imum resolution necessary to follow the evolution of black-hole accretion disks in global

general-relativistic MHD simulations such as these. Below that resolution the characteris-

tic MRI wavelength (λMRI ≡ 2πvA/Ω, where vA is the Alfvén speed) is not covered by a

sufficient number of zones over much of the disk volume. This has nothing to do with the

cubed-sphere grid itself, but is rather a universal constraint for these types of problems.

Overall we consider our experimentation with the cubed-sphere grid to be a success. In

future work we will present further analysis of tilted disks (and their associated jets) evolved

using this new grid option.
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A. Cubed-Sphere Transformations

Included in this appendix are the transformations necessary to go from the cubed-sphere

coordinates {r, φ1, φ2} to the corresponding spherical-polar ones {r, θ, φ} on each block.

• Block 0 – (centered about the +x-axis; π/4 ≤ φ1 ≤ 3π/4; −π/4 ≤ φ2 ≤ π/4)

cos θ =
cos φ1 cos φ2

√

1 − (cos φ1 sin φ2)2

sin θ =
√

1 − cos2 θ

sin φ = sin φ2

cos φ = cos φ2 (A1)

• Block 1 – (centered about the +y-axis; π/4 ≤ φ1 ≤ 3π/4; π/4 ≤ φ2 ≤ 3π/4)

cos θ =
cos φ1 sin φ2

√

1 − (cos φ1 cos φ2)2

sin θ =
√

1 − cos2 θ

sin φ = sin φ2

cos φ = cos φ2 (A2)

• Block 2 – (centered about the −x-axis; π/4 ≤ φ1 ≤ 3π/4; 3π/4 ≤ φ2 ≤ 5π/4)

cos θ =
− cos φ1 cos φ2

√

1 − (cos φ1 sin φ2)2

sin θ =
√

1 − cos2 θ

sin φ = sin φ2

cos φ = cos φ2 (A3)

• Block 3 – (centered about the −y-axis; π/4 ≤ φ1 ≤ 3π/4; 5π/4 ≤ φ2 ≤ 7π/4)

cos θ =
− cos φ1 sin φ2

√

1 − (cos φ1 cos φ2)2

sin θ =
√

1 − cos2 θ

sin φ = sin φ2

cos φ = cos φ2 (A4)
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• Block 4 – (centered about the +z-axis −π/4 ≤ φ1 ≤ π/4; −π/4 ≤ φ2 ≤ π/4)

cos θ =
cos φ1 cos φ2

√

1 − (sin φ1 sin φ2)2

sin θ =
√

1 − cos2 θ

sin φ =
cos φ1 sin φ2

sin θ
√

1 − (sin φ1 sin φ2)2

cos φ =
sin φ1 cos φ2

sin θ
√

1 − (sin φ1 sin φ2)2
. (A5)

• Block 5 – (centered about the −z-axis −π/4 ≤ φ1 ≤ π/4; −π/4 ≤ φ2 ≤ π/4)

cos θ =
− cos φ1 cos φ2

√

1 − (sin φ1 sin φ2)2

sin θ =
√

1 − cos2 θ

sin φ =
cos φ1 sin φ2

sin θ
√

1 − (sin φ1 sin φ2)2

cos φ =
− sin φ1 cos φ2

sin θ
√

1 − (sin φ1 sin φ2)2
. (A6)
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Table 2. Kerr Simulation Parameters

Simulation a/M Tilt Resolutiona Endb Ṁc

Angle Time

515Ld 0.5 15◦ 64 × 32 × 32 × 6 10 -0.0032

515Hd 0.5 15◦ 128 × 64 × 64 × 6 10 -0.0114

515SPe 0.5 15◦ 1283 10 -0.0122

aIn the case of the spherical-polar grid this represents the equivalent

peak resolution of an unrefined grid.

bIn units of torb = 789GM/c3, the geodesic orbital period at the initial

pressure maximum rcenter.

cCalculated from the slopes of M vs. t over the interval 3 ≤ t/torb ≤ 4.

dCubed-sphere grid.

eMulti-resolution-layer spherical-polar grid.
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